

RESOURCES FOR "SSC-I PHYSICS" ZUEB EXAMINATIONS 2021

@copyright ZUEB

PREFACE:

The ZUEB examination board acknowledges the serious problems encountered by the schools and colleges in smooth execution of the teaching and learning processes due to sudden and prolonged school closures during the covid-19 spread. The board also recognizes the health, psychological and financial issues encountered by students due to the spread of covid-19.

Considering all these problems and issues the ZUEB Board has developed these resources based on the condensed syllabus 2021 to facilitate students in learning the content through quality resource materials.

The schools and students could download these materials from <u>www.zueb.pk</u> to prepare their students for the high quality and standardized ZUEB examinations 2021.

The materials consist of examination syllabus with specific students learning outcomes per topic, Multiple Choice Questions (MCQs) to assess different thinking levels, Constructed Response Questions (CRQs) with possible answers, Extended Response Questions (ERQs) with possible answers and learning materials.

ACADEMIC UNIT ZUEB:

2. Constructed Response Questions (CRQs)

HOW TO ATTEMPT CRQs:

- Write the answer to each Constructed Response Question/ERQs in the space given below it.
- Use black pen/pencil to write the responses. Do not use glue or pin on the paper.

SECTION B (SHORT ANSWER QUESTIONS)

S.NO	CRQ	ANSWER	CL	DL					
	CHAPTER 2								
1.	What are physical quantities?	There are thousands of physical things and quantities present around us. To understand them and to explain them there must be some scales of measurement so they can be effectively use universally. In 1960 in the international conference, a system of measurements is recommended which is universally acceptable. In this system which is called S.I, seven physical quantities are said to be basic quantities and their scale of measurement are said to be basic units.	K/R	E					

Following are these basic quantities and their units			
PHYSICAL QUANTITY	SYM BOL	UNIT	SYM BOL
Length	I	Mete r	m
Mass	m	Kilog ram	Kg
Time	t	Seco nd	S
Current	Ι	Amp ere	A
Temperature	Т	Kelvi n	К
Light intensity	Ιv	Cand ela	Cd
Quantity of matter	n	Mole	Mol

S.NO	CRQ	ANSWER	CL	DL					
	CHAPTER 3								
2.	Define the following:	REST:	K/R	Ε					
	Rest	"A body is said to be in a state of rest if its position							
	Motion	with respect to its surrounding does not change							
	Distance	with time."							
	Displacement	Examples: A book placed on a table, a fixed pole, buildings etc.							
		MOTION: "A body is said to be in the state of motion if it is continuously changing its position with respect to its surrounding with time." Examples: A running boy, a flowing stream, moving car, etc.							
		DISTANCE: "It is the length of the actual path of the motion between two points. It may be curve or straight line".							

			r	
		It is a scalar quantity. It is usually denoted by 'S'		
		DISPLACEMENT		
		"It is the shortest straight line distance between two location directed from one point to the other." It is a vector quantity. It is usually denoted by 'd'. Unit: Unit of displacement is meter denoted by 'm'.		
3.	Define types of motion?	TYPES OF MOTION	K/R	E
		All types of motions can be classified as		
		TRANSLATORY (OR) LINEAR MOTION: <i>"If a body is moving on a straight line or curved</i>		
		path but every particle in the body is being		
		displaced by the same amount and not repeating		
		its motion, then it is said to be in linear or		
		translatory motion."		
		Examples: Motion of a car on a straight road, motion of falling object, motion of motorbike on a circular road etc.		
		ROTATIONAL (OR) CIRCULATTORY MOTION:"If a body is moving in a circular path around a fixed point called center and thus repeating its motion with time then this motion is called rotational motion."Example:Motion of planets around the Sun, electron motion around nucleus, motion of wheels etc.		
		VIBRATORY (OR) OSCILLATORY MOTION: "If a body is moving back and forth or up and down about a fixed point called equilibrium point then this type of motion is known as vibratory or oscillatory motion." Example: Motion of a pendulum, motion of a swing, motion of bird's feather during flight.		
4.	Derive first equation of	FIRST EQUATION OF MOTION	K/A	Μ
	motion?	Let a body of mass 'm' moving with uniform acceleration "a" starting with initial velocity 'V _i ' and attains a final velocity 'V _f ' in time 't' then according to the definition of the acceleration,		
		Acceleration = <u>change in velocity</u>		
		time		

5.	Derive second equation of motion?	$a = \frac{\Delta V}{t}$ $a = \frac{V_f - V_i}{t}$ $v_f = v_i + a t$ SECOND EQUATION OF MOTION Let a body is moving with a uniform acceleration "a" starting with a initial velocity V _i and attains a final velocity V _f in time 't' and covers a distance 'S'. This distance can be written as, $S = V_{av} \times t (1)$ But $V_f + V_i$ $V_{av} = \frac{V_f + V_i}{2}$ put in equation (1) $\frac{V_f + V_i}{2}$ $S = \frac{V_{av} - V_i}{2}$	K/A	M
		$S = \frac{2}{(a t + 2 V_i)}$ $S = \frac{(a t^2 + 2 t V_i)}{2}$ $S = \frac{a t^2 + 2 t V_i}{2}$		
6.	A motor cyclist covers 150 m in 10 seconds. Find the speed of the motor cyclist.	15m/s	K/A	E

7.	Find the time taken by sunlight to reach the ground if the distance between the sun and the earth is 1.5 x 10 ⁸ Km. Velocity of light is 3 x 10 ⁸	8 min 20 seconds	K/A	E
8.	m/s. Define and explain Newtons first law of motion?	 FIRST LAW OF MOTION Statement: "A body remains at rest or continues to move with constant speed on a straight line unless acted by an unbalance force." Explanation: This law explains that, if a body is under the influence of several forces and if there is no net force acting on the body then it will keep its state i-e rest or motion with uniform velocity. This law also explains an important property of bodies namely inertia, by which a body tries to maintain its state. Examples:Book placed on a table, motion of a parachute, motion of coin in a viscous fluid. 	K/R	M
9.	Define and explain Newtons second law of motion?	SECOND LAW OF MOTION Statement: "It states that whenever an unbalance force is applied on a body it produces acceleration in the body in its own direction, this acceleration is directly proportional to the magnitude of unbalanced force and inversely proportional to the mass of the body." <i>Mathematical Form:</i> Consider an object of mass "m" on which an unbalance force of magnitude "F" is acting and due to which acceleration "a" is produced in the direction of force. Now according to the first part of the law we can write a α F (1)	K/R	M

10.	Differenciate between mass and weight?	According to the second part of the law $a \alpha \frac{1}{m} - \dots - \dots - (2)$ Combining these result F $a \alpha - \dots - m$ $a = k \frac{F}{m} - \dots - \ln S.I \text{ system constant } k = 1$ Or $F = m a$ Ifferenciate between and weight?						E
			S.NO 1	MASS Mass is the quantity of matter in a	WEIGHT Weight is the force by which earth nulls a			
				body and measures the inertia.	body towards its center.			
			2	Mass has no direction.	Weight is always acts towards the center of earth.			
			3	Mass is a constant quantity and remains same everywhere.	Weight is different at different distances from center of earth.			
		(60.1	4	Mass can be measured by a common balance.	Weight is always measured by spring balance			

	acceleration of 3 m/s ² ; find				
	the force acting on it.				
12.	An object of mass 50 kg is moving with an acceleration of 5 m/s ² ; find	(250 N)		K/A	Ε
13.	Define Torque?	DEFINITION	"Torque or movement of force is	K/A	D
101		the turning effe	ect of force"		
		FORMULA	Torque is the product of the force		
		"F" and force a	rm "d"		
		Mathematically	vit can be		
		expressed as			
		$\tau = F \times d$			
		FORCE ARM	Force arm or		
			moment arm is the		
			perpendicular		
			distance between		
			the axis of rotation		
			of the body and		
			, line of the action		
			of the force		
		UNIT	In M.K.S system		
		the unit of torg	jue is Nm.		
	QUANTITY	Torque is a vector quantity			
		POSITIVE TOR	QUE: Torque is said to be positive if		
			the		
			direction		
			of rotation		
			of the		
			body is		
			anti-clock		
			wise		
		NEGATIVE TO	RQUE Torque is said to be negative		
			if the		
			direction		
			of rotation		
			of the		
			body is		
			clock wise		
14.	Define Equilibrium?	DEFINITION	"A body is said to be in equilibrium	K/R	M
		if it is in rest or	move with uniform speed by the		
		influence of for	rce" There are two types of		
		equilibrium			
		STATIC EQUIL	IBRIUM		

		STATIC EQUILIBRIUM		
		"A body is said to be in static equilibrium if it is in		
		rest by the influence of force".		
		EXAMPLE		
		1) A body lying on the table		
		2) A body hanging at rest from the ceiling by a		
		string.		
		DYNAMIC EQUILIBRIUM		
		"A body is said to be in dynamic equilibrium if it		
		move with uniform speed by the influence of		
		force".		
		EXAMPLE		
		1) Train moving with uniform velocity.		
		2) Paratrooper falling down with uniform		
		velocity		
		CONDITIONS There are two conditions of		
		equilibrium		
		1) First condition of equilibrium		
		2) Second condition of equilibrium		
		FIRST CONDITION OF EQUILIBRIUM		
		The resultant of all the forces acting on a body is		
		zero. OR		
		Algebraic sum of all the forces acting along x-axis		
		and y- axis must equal to zero, mathematically it		
		can be expressed as:		
		$\Sigma F x = 0$		
		$\Sigma F \mathbf{v} = 0$		
		SECOND CONDITION OF EQUILIBRIUM		
		The resultant of all the torque acting on a body is		
		zero		
		Mathematically it can be expressed as:		
		$\Sigma \tau = 0$		
15.	Define centripetal	PHYSICAL DEFINITION:	K/R	M
	acceleration.			
		"If a body move in a circular path then directions of		
		tangential velocity continuously change. Such an		
		direction of tangential velocity called centripetal		
		acceleration."		
		MATHEMATICAL DEFINITION:		
		It is the ratio of square of the speed to the radius of		
		a circle mathematically it can be expressed as:		

		1	1	
		$a_{c} = \frac{V^{2}}{r}$ <u>DIRECTION:</u> The direction of centripetal acceleration always towards the centre of a circle		
16.	Define centripetal force and centrifugal force.	CENTRIPETAL FORCE: "Such a force which keeps a body in a circular path called centripetal force." If a body of mass 'm' move in a circular path of radius 'r' with uniform speed 'V' then body must possess centripetal force and according to Newton's second law of motion centripetal force can obtained by the formula	K/R	М
		$F_{cp} = ma_{c}$ Here $a_{c} = \frac{V^{2}}{r}$ we put in above		
		$F_{cp} = \frac{mV^2}{r}$ This is the magnitude of centripetal force direction of centripetal force always towards the centre of a circle.		
		CENTRIFUGAL FORCE: It is the reaction of centripetal force therefore magnitude of centrifugal force is equal to the magnitude of centripetal force but direction of centrifugal force always away from the centre of a circle mathematically it can be express as; $\mathbf{F}_{cf} = -\mathbf{F}_{cp}$ $\mathbf{F}_{cf} = -\mathbf{ma}_{c}$		
		$\mathbf{F}_{cf} = -\frac{\mathbf{mv}^2}{\mathbf{r}}$		
17.	Define work and give its unit.	DEFINITION: "Work is said to be done if a force act on the body and the body displace along the direction of force."	K/R	R
		EXPLANATION: If force F and displacement S are in the same direction then work can be obtained by the formula Work = FS		

			1	
		If force F and displacement S makes an angle θ		
		with respect to each other then work can be		
		obtain by the formula		
		Work = $F S \cos \theta$		
		UNIT:		
		In M.K.S. System unit of work is Joule [J]		
18.	Define Elasticity, Elastic limit, Stress, Strains, Hooks Law, Young's Modulus.	ELASTICITY: When force is applied on a body to change its length, shapes or volume and after removal of this force if a body regains or comes back to its original position then this property is called elasticity.	K/R	D
		ELASTIC LIMIT: It is the maximum limit of body with in which a body regains its original position after removal of applied force .		
		STRESS: Stress is the amount of reaction force per unit area. Mathematically it can be expressed as:		
		Stress = $\frac{\text{Reaction force}}{\text{area}}$		
		OR $\sigma = \frac{F}{A}$		
		In MKS system unit of stress is N/m ² .		
		STRAIN: Strain is the deformation produce by the stress.		
		LONGITUDINAL STRAIN		
		Longitudinal strain is the fractional change in		
		length by the application of stress.		
		Mathematically it can be expressed as		
		$\epsilon = \frac{\text{Change in length}}{\text{Orignal length}}$		
		$\epsilon = \frac{\Delta L}{L}$ It has no units.		
		HOOK'S LAW: According to Hook's law,		
		"Within elastic limit stress is directly		
		proportional to strain".		
		Mathematically it can be expressed as:		
		∴ Stress ∞ Strain		
		Stress = k Strain		
		OR		

		$\frac{\text{Stress}}{\text{Strain}}$ With the help of above also be state as: "Within elastic limit the the strain always rema YOUNG'S MODULUS ratio of stress to the lo Mathematically it can be $\mathbf{Y} = \frac{\mathbf{F}}{\mathbf{Longit}}$ $\mathbf{Y} = \frac{\mathbf{F}}{\mathbf{A}}$ \mathbf{L} In MKS s	= k e equation Hook's Law can e ratio of stress to ins unchanged". : Young's Modulus is the ngitudinal strain. e expressed as: $\frac{Stress}{Tudinal Strain}$ $= \frac{F}{A} \times \frac{L}{\Delta L}$ eystem its unit is N/m ² .		
19.	Give the difference between heat and temperature?	HEAT Heat is the form of energy which can transfer from hot body to cold body. Heat is the total kinetic energy of	TEMPERATURE Temperature measures the degree of hotness or coldness of a body. Temperature is the average kinetic energy	K/R	М
		the molecule of a substance. Physically heat cannot be measured but calculated by the formula $\Delta \mathbf{Q} = \mathbf{m} \mathbf{c} \Delta \mathbf{T}$ In S.I system unit of	of the molecule of a substance. Temperature can be measured with the help of thermometer In S.I system unit of		
20.	State and explain Boyle's law ,Charles law and pressure law?	BOYLE'S LAW STATEMENT: "At for fix no of molecule vo proportional to the pres EXPLANATION: If 'P' represents volume of a ga	constant temperature and olume is inversely soure." ' represents pressure and 'V' as then mathematically	K/R	D

Boyle's law can be expressed as:

$$V \propto \frac{1}{p}$$

$$V = \frac{K}{p}$$

$$PV = K$$
This is the equation of Boyle's law and with the help of above equation Boyle's law can also be stated as:
"At constant temperature and for fix no. of molecule the product of pressure and volume remain constant."
CHARLES LAW
STATEMENT: "At constant pressure and for fix no. of molecule volume is directly proportional to the temperature."
EXPLANATION: If 'V' represent volume of the gas and 'T' represent temperature of a gas then Charles law can be expressed as

$$V \propto T$$

$$V = k T$$

$$\frac{V}{T} = K$$
This is the equation of Charles law and with the help of above equation Charles law can also be stated as:
"At constant pressure and for fix no. of molecule the ratio of volume to the temperature remain constant"
PRESSURE LAW
STATEMENT: "At constant volume the pressure of given mass of a gas is directly proportional to its absolute temperature."

		$\mathbf{P} \propto \mathbf{T}$ $\mathbf{P} = \mathbf{K}\mathbf{T}$ $\frac{\mathbf{P}}{\mathbf{T}} = \mathbf{K}$ This is the equation of pressure law and with the help of above equation pressure law can also be stated as:		
21.	Derive an expression for general gas equation.	molecules the ratio of pressure to the temperature remains constant." General gas equation is a single relation in to which Boyle's law, Charles law and Avogadro's law can be combined. According to Boyle's Law $V \propto \frac{1}{P}$ According to Charles law $V \propto T$ According to Avogadro's law $V \propto n$ Combining these three laws we get $V \propto \frac{n T}{P}$	K/A	M
22.	Calculate the volume occupied by 5 mole of gas at 27°C if it is subjected to a pressure of 1.0 × 10 ⁵ N/m ² . (gas constant R = 8.13 J mole ⁻¹ K ⁻¹)	V = $\frac{R n T}{P}$ P V = n R T Where R is the constant of proportionality and it is known as universal gas constant or general gas constant. In M.K.S. System its value is 8.313 J/mol K. [0.12m ³]	U/A	M

23.	If 10 mole of a gas exert a pressure of 20 × 10⁴ N/m² when confined in a tank of 40 m³ capacity at 57°C what would be the pressure of 100 mole of the same gas when confined in a 80 m³ tank at 477°C.	[2.27x 10 ⁶ N/m ²]	U/A	M
24.	The coefficient of linear thermal expansion of aluminum is 26×10 ⁻⁶ °C ⁻¹ . An aluminum rod is 2 m long at 25°C. what will be its length at 75°C.	[2.0026m]	U/A	Μ
25.	At 16°C the length of an iron rod is 510cm . How long is it at 99°C if the co- efficient of linear expansion of iron $\alpha = 12 \times 10^{-6}$ °C ⁻¹ .	[510.508m]	U/A	М